|
A parallel-plate fluid flow chamber is a benchtop (in vitro) model that simulates fluid shear stresses on various cell types exposed to dynamic fluid flow in their natural, physiological environment. The metabolic response of cells in vitro is associated with the wall shear stress. A typical parallel-plate flow chamber consists of a polycarbonate distributor, a silicon gasket, and a glass coverslip. The distributor, forming one side of the parallel-plate flow chamber, includes inlet port, outlet port, and a vacuum slot. The thickness of the gasket determines the height of the flow path. The glass coverslip forms another side of the parallel-plate flow chamber and can be coated with extracellular matrix (ECM) proteins, vascular cells, or biomaterials of interest. A vacuum forms a seal to hold these three parts and ensures a uniform channel height.〔Loscalzo J., Schafer A.I. "Thrombosis and hemorrhage". Lippincott Williams & Wilkins, 2003〕 Typically, the fluid enters one side of the chamber and leaves from an opposite side. The upper plate is usually transparent while the bottom is a prepared surface on which the cells have been cultured for a predetermined period. Cell behavior is viewed with either transmitted or reflective light microscope. == Equation == Within the chamber, fluid flow creates shear stress () at the chamber wall, and a typical equation describing this relationship as a function of flow rate, Q, and chamber height, h, can be derived from Navier-Stokes equations and continuity equation: With the assumptions such as Newtonian Fluid, Incompressible, Laminar Flow and no slip boundary conditions, Navier-Stokes equations simplifies to: Solving the first differential equation will provide: Solving the second differential equation for no slip boundary condition the velocity profile is given by: This can then be used in continuity equation that states: Solving this integral will output: When solving the equation for the change in pressure and plugging it into the first differential equation the shear stress can be calculated for the parallel plate flow chamber. In which μ is the dynamic viscosity, and w the width of the flow chamber. In these methods, the shear stresses exerted on the cells are assumed approximately equal to the chamber wall shear stresses since cell height is approximately two orders of magnitude less than the chamber. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Parallel-plate flow chamber」の詳細全文を読む スポンサード リンク
|